Это не официальный сайт wikipedia.org 01.01.2023

Видеопамять — Википедия

Видеопамять

(перенаправлено с «Видео-ОЗУ»)
Видеопамять также является частью современных видеокарт. Подробнее см. в статье «Видеокарта».

Видеопа́мять — это внутренняя оперативная память, отведённая для хранения данных, которые используются для формирования изображения на экране монитора[1].

Чипы видеопамяти вокруг видеопроцессора
1 МБ дополнительной видеопамяти типа VRAM для RiscPC[en]. Добавление памяти позволяло показывать больше цветов и большее разрешение.
Matrox Millennium G250 8+8 МБ и Matrox G250-LE 8 МБ

Видеопамять относится к названиям англ. video memory, video Random-Access Memory (video RAM, VRAM — оперативная видеопамять, видео ОЗУ[2], видео RAM[3]),[4] video buffer — видеобуфер, refresh RAM — память регенерации[5], display memory — память дисплея, graphics memory, video storage[6], а также к названиям различных типов памяти. Термин «VRAM» иногда означает технологию двухпортовой DRAM, использовавшуюся в 1980-х годах.

ОписаниеПравить

В видеопамяти располагаются данные, отсылаемые затем на экран как изображение. При работе в текстовом режиме в видеопамяти находятся коды и атрибуты символов, в графическом режиме — битовая карта[5]. Часть видеопамяти, используемая под изображение для вывода на экран называется буфером (кадра) изображения (frame buffer)[7]. В текстовом режиме изображение состоит из символьной матрицы и область видеопамяти под него называется видеостраницей (video page)[8]. В обычном представлении процессор записывает данные в буфер изображения, после чего его считывает видеоконтроллер. Характеристиками видеопамяти являются её объём (memory size (МБайт, ГБайт)), тип (memory type), разрядность шины памяти (memory interface width, memory bus width (бит)), и тактовая частота (frequency, memory clock speed (МГц, ГГц))[8]. Пропускная способность (memory bandwidth (Гбайт/с)) вычисляется произведением разрядности шины на тактовую частоту[8].

GDDR5 имеет несколько обозначений частоты: опорная, реальная и эффективная. На опорной частоте (core clock) работают транзисторы в чипах памяти. Реальная — частота шины (I/O bus clock) на которой работают буферы чипов памяти и буферы контроллера памяти, она в два раза больше опорной. Эффективная — по технологии DDR скорость передачи данных в два раза больше частоты шины.[9] Пропускная способность определяется по формуле (частота x разрядность / 8) x множитель, где 8 переводит биты в байты, множитель 2 для GDDR3, 4 для GDDR5[10]. Скорость памяти (memory speed) также обозначают в битах в секунду (Gbps, Гбит/с) показывая скорость одной линии (пина) в чипе. Например, на видеокарте 8 чипов памяти, в одном чипе GDDR5 32 линии на 8 Gbps каждая, тогда 8x32x8 даст общую пропускную способность в 2048 Гбит/с или 256 ГБайт/с[11].

Видеопамять используется для временного хранения, помимо непосредственно буфера изображения, и другие: текстуры, шейдеры, полигональные сетки, вершинные буферы, Z-буфер (удалённость элементов изображения в 3D-графике), и тому подобные данные графической подсистемы (за исключением, по большей части данных Video BIOS, внутренней памяти графического процессора и т. п.) и коды. При этом в видеопамяти может содержаться как непосредственно растровый образ изображения (экранный кадр), так и отдельные фрагменты как в растровой (текстуры), так и в векторной (многоугольники, в частности треугольники) формах. Программы для мониторинга, например RivaTuner и MSI AfterBurner, могут показывать объём используемой видеопамяти, Intel VTune отслеживает использование GPU пропускной способности памяти на чтение и запись. Программы-просмотрщики (VRAM Viewer) позволяют определять точное местоположение, просматривать и сохранять графические элементы из видеопамяти, например в эмуляторах.

Чтобы уменьшить объём используемой VRAM, разработчики приложений могут выбрать как текстуры хранятся в VRAM. Кроме 32-битного описания пиксела в RGBA8, применяются 16- (RGB5_A1, RGBA4) и 8- битные (RGBA2) описания или сжатия (например, для S3TC есть аппаратная поддержка). Урезанные форматы файлов ухудшают качество, а при сжатии появляются артефакты. Спрайты плотно упаковываются в текстурный атлас (задача об упаковке в контейнеры). Несколько текстур представляется как одна текстура с палитрой. При использовании ресурсоёмких настроек или ошибках в играх иногда возникает ошибка «ran out of video memory»[12]. DirectDraw  (англ.) (рус. позволял разработчикам приложений прямой доступ к VRAM.

Процессор осуществляет запись по необходимости, а монитор обращается к ней непрерывно[8]. При обновлении буфера в моменты, когда предыдущее изображение отрисовано на дисплее не до конца или при использовании видеопамяти больше чем физически доступно[13], появляется артефакт разрыва изображения[en] (tearing, stuttering)[14]. Для более равномерного обновления буфера используют вертикальную синхронизацию[14].

ТехнологииПравить

Унифицированная архитектура памяти en:Unified Memory Architecture (UMA) использует часть оперативной памяти как видеопамять. Под этим названием в разное время появлялись решения разных разработчиков. В технологии AGP-текстурирования графический процессор мог обращаться, помимо собственной памяти видеокарты, к файлам в оперативной памяти. В решениях Intel для встроенной графики объём видеопамяти выделяется динамически[15][16] (Intel Dynamic video memory technology, DVMT) до половины[17] системной памяти или меньше[18], а UEFI позволяет настраивать максимальный размер видеопамяти и апертуру[19]. В решениях Nvidia и Apple графическая и системная память используют общее адресное пространство[20]. В 2004 году ATI и Nvidia использовали HyperMemory и TurboCache[en] для удешевления видеокарт.

Технологии Microsoft DirectStorage API и RTX IO позволяют загружать данные из NVMe SSD напрямую в VRAM без использования CPU и системной памяти.[21]

В технологии объединения карт Nvidia SLI объём VRAM не удваивался, так как данные дублировались между VRAM двух карт. В начале, карта с большим объёмом подстраивалась под карту с меньшим и избыток объёма не использовался. С 100.xx версии драйверов в SLI объединялись только карты с совпадающим объёмом памяти.

РазгонПравить

 
На профессиональных Nvidia Quadro видеопамять оснащается собственным радиатором

Разгон VRAM возможен через изменение параметров в BIOS видеокарты[22] или используя специальные утилиты настройки видеокарты. Некоторые производители разрабатывают такие утилиты для собственных видеокарт, предоставляя возможность как ручного, так и автоматического разгона основанного на алгоритмах разработчика. Настройки VRAM позволяют кастомизировать тактовые частоты памяти и напряжения, а также тайминги для уменьшения задержек.[23] В кастомизированных режимах работы ей требуется адекватный контроль и отвод тепла. В некоторых чипах GDDR встроены датчики температуры для защитных механизмов (downclocking). Micron для GDDR5, GDDR5X и GDDR6 указывает maximum junction temperature в 100°С.[24][25]

ИсторияПравить

В 1970-х в видеопамяти располагались данные текстового режима. После удешевления чипов памяти стало возможным хранить в видеопамяти графику в пикселях. В 80-90-х объём размещаемой на графических адаптерах VRAM быстро рос.

В 1981 году MDA имел 4 КБ VRAM и CGA — 16 КБ, Intel iSBX 275 в 1983 — 32 КБ, ATI Graphics Solution Rev 3[en] в 1986 — 64 КБ, VGA в 1986—256 КБ, NV1 в 1995 — 2 МБ, RIVA 128 в 1997 — 4 МБ, RIVA TNT[en] в 1998 — 16 МБ, GeForce 256 в 1999 — 32 МБ. К концу 2000-х объём достиг 2 ГБ. В 2000 видеокарты в основном содержали 64 МБ (Radeon 7500 — 128 МБ), 2001—256 МБ, 2005—512 (GeForce 6600), 2007—1024 МБ (GeForce 8600 GT), 2008—2048 МБ (Radeon HD 4870). К 2015 объём достиг 8 ГБ. В 2011 — 3072 МБ (GeForce GT 440), 2012 — 4096 МБ (GeForce GTX 670), 2013 — 6144 МБ (GeForce GTX Titan), 2014 — 8192 МБ (Radeon R9 290X). Хотя в 2015 году вышла топовая модель видеокарты с 12 ГБ VRAM (GeForce Titan X), в 2018 — 24 ГБ (Titan RTX) и 32ГБ (Titan V CEO), к 2020 году в большинстве выпускаемых видеокарт предлагалось 2-8 ГБ VRAM.

 
IBM Professional Graphics Controller (1984—1987) — примерно 80 % общей поверхности из трёх плат занимают 40 чипов видеопамяти

В профессиональных вариантах видеокарт обычно добавляется больший объём видеопамяти. В 1980-х у IBM Professional Graphics Controller было 320 КБ из 40 чипов DRAM по 64 КБ. В 2020 у Quadro RTX 8000 было 48 ГБ, а с объединением карт через NVLink расширялось до 96 ГБ.

Типы видеопамяти[26]: FPM DRAM (1990), VRAM, WRAM (1995), EDO DRAM (1995), SDRAM, MDRAM, SGRAM, DDR2 SDRAM,[27] RDRAM, DRAM, CDRAM, Burst EDO, 3D RAM, Embedded RAM, FeRAM, DRDRAM, DDR SDRAM (DDR), ESDRAM, FCRAM[en], MRAM[28], GDDR (2000), GDDR2 (2003), GDDR3 (2004), GDDR4 (2006), GDDR5 (2008)[29][30], GDDR6 (2017), HBM (2013), HBM2 (2016). Типы VRAM, WRAM — двухпортовая DRAM (двухпортовое видео-ОЗУ) позволяющая одновременно выполнять запись и чтение данных[4][7][27].

Для совместимости с 32-битными ОС[31] объём VRAM, напрямую доступной CPU через PCI, был ограничен 256 Мбайтами. В 2008 году в стандарт PCI Express 3.0 была добавлена технология Resizable BAR, которая обеспечивает доступ ко всему объёму видеопамяти.[32][33] В AMD технология называлась Smart Access Memory (SAM).

При изготовлении видеокарт уже достаточно давно используется память GDDR3. На смену ей пришла GDDR4, которая имеет более высокую пропускную способность, чем GDDR3; однако GDDR4 не получила широкого распространения вследствие плохого соотношения «Цена-производительность» и ограниченно использовалась лишь в некоторых видеокартах верхнего ценового сегмента (например Radeon X1950XTX, HD 2900 XT, HD3870). Далее появилась память GDDR5, которая по состоянию на 2012 год является наиболее массовой, GDDR3 используется в бюджетном сегменте. В 2018 году в топовых видеокартах устанавливается память типа HBM и HBM2, GDDR5X и GDDR6. По статистике Steam в 2018 году 2GB VRAM было у 32 % их игроков, 4GB — 19 % и 1GB — 17 %[34]. В системных требованиях к играм часто указывают необходимый объём VRAM для разных уровней настроек[35].

Объём памяти большего количества современных видеокарт варьируется от 256 МБ (например, AMD Radeon HD 4350)[36] до 48 ГБ (например, NVIDIA Quadro RTX 8000)[37]. Поскольку доступ к видеопамяти GPU и другими электронным компонентами должен обеспечивать желаемую высокую производительность всей графической подсистемы в целом, используются специализированные высокоскоростные типы памяти, такие, как SGRAM, двухпортовые (англ. dual-port) VRAM, WRAM, другие. Приблизительно с 2003 года видеопамять, как правило, базировалась на основе DDR технологии памяти SDRAM, с удвоенной эффективной частотой (передача данных синхронизируется не только по нарастающему фронту тактового сигнала, но и ниспадающему). И в дальнейшем DDR2, GDDR3, GDDR4, GDDR5 и на момент 2016 года[38] GDDR5X. С выходом серии высокопроизводительных видеокарт AMD Fury совместно с уже устоявшейся на рынке памятью GDDR начала использоваться память нового типа HBM, предлагая значительно большую пропускную способность и упрощение самой платы видеокарты, за счёт отсутствия необходимости разводки и распайки чипов памяти. Пиковая скорость передачи данных (пропускная способность) памяти современных видеокарт достигает 480 ГБ/с для типа памяти GDDR5X (например, у NVIDIA TITAN X Pascal[39]) и 672 ГБ/с для типа памяти GDDR6 (например, у TITAN RTX[40]).

УстройствоПравить

Видеопамять располагается на видеоадаптере или выделяется как часть от оперативной памяти[41]. Как правило, чипы оперативной памяти современной видеокарты припаяны прямо к текстолиту печатной платы, в отличие от съёмных модулей системной памяти, которые вставляются в стандартизированные разъёмы ранних видеоадаптеров.

Шина данныхПравить

Видеопамять отличается от «обычной» системной ОЗУ более жёсткими требованиями к ширине шины. Графическая шина данных — это магистраль, связывающая графический процессор и память видеокарт.

Полоса пропускания шина данных видеопамяти бывает:

  • 32-битной.
  • 64-битной.
  • 96-битной. (нестандартная шина памяти)
  • 128-битной.
  • 160-битной. (нестандартная шина памяти)
  • 192-битной.
  • 256-битной.
  • 320-битной.
  • 352-битной.
  • 384-битной.
  • 448-битной. (нестандартная шина памяти)
  • 512-битной.
  • 896-битной. (нестандартная шина памяти)
  • 1024-битной (только HBM2-память)
  • 2048-битной (только HBM2 память)
  • 4096-битной (HBM и HBM2 память)

Имеет значение соотношение количества памяти, её типа и ширины шины данных: 512 МБ DDR2, при ширине шины данных в 128 бит, будет работать медленнее и гораздо менее эффективно, чем 256 МБ GDDR3 при ширине шины в 128 бит и т. п. По понятным причинам, 256 МБ GDDR3 с шириной шины 256 бит лучше, чем 256 МБ GDDR3 с шириной шины в 128 бит и т. п.

ПроизводствоПравить

 
На нижней стороне видеокарты видны две неиспользованные квадратные контактные площадки (сверху справа) для чипов памяти

Производители видеокарт не изготавливают VRAM самостоятельно, а закупают её. Некоторые известные производители VRAM — Samsung, Micron, Elpida Memory[en] и Hynix.[42] Разработчик видеокарты предусматривает в дизайне несколько конфигураций и оставляет тип, количество и размещение компонентов на плате на выбор производителей. На разных моделях одного референсного дизайна видеокарты может быть установлено разное количество чипов памяти предусмотренных типов, а также они могут быть расположены как на верхней, так и на нижней стороне платы.

Также стоит учитывать, что из-за относительно невысокой стоимости видеопамяти многие производители видеокарт устанавливают избыточное количество видеопамяти (4, 6 и 8 Гбайт) на слабые видеокарты с целью повышения их маркетинговой привлекательности. На видеокартах чипы памяти обычно располагают вокруг видеопроцессора, чтобы отводить тепло от них общим с процессором кулером.

См. такжеПравить

ПримечанияПравить

  1. Михаил Гук. Аппаратные средства IBM PC. Энциклопедия, 2-е изд. — СПб.: Питер, 2002. — 928 с.: ил. — С. 519
  2. Толковый словарь по вычислительной технике. — М.: Изд. отдел "Русская редакция", 1995. — С. 402—403. — 496 с. — ISBN 5-7502-0008-6.
  3. Ваулина Е.Ю. Термины современной информатики. — М.: Эксмо, 2004. — 636 с. — ISBN 5-699-05439-1.
  4. 1 2 Воройский Ф. С. Информатика. Новый систематизированный толковый словарь. — М.: Физматлит, 2003. — С. 215. — 760 с. — ISBN 5-9221-0426-8.
  5. 1 2 Кочергин В. И. Англо-русский толковый научно-технический словарь по системному анализу, программированию, электронике и электроприводу. — Томск, 2008. — Т. 1. — С. 636. — 652 с. — ISBN 5-7511-1937-1.
  6. Кочергин В. И. Большой англо-русский толковый научно-технический словарь. — Томск: Издательство Томского Университета, 2016. — ISBN 978-5-7511-2332-1.
  7. 1 2 Пивняк Г. Г. буфер (кадра) изображения // Толковый словарь по информатике. — Днепропетровск, 2008. — ISBN 978-966-350-087-4.
  8. 1 2 3 4 Соломенчук В. Г. Аппаратные средства PC. — 6-е изд. — БХВ-Петербург, 2010. — 781 с. — ISBN 978-5-9775-0432-4.
  9. Почему разные программы показывают разную частоту видеопамяти?  (рус.) nvworld.ru. Дата обращения: 27 февраля 2021. Архивировано 2 февраля 2021 года.
  10. DDR3 vs GDDR5 Graphic Card Comparison - See The Difference with the AMD Radeon HD 7750 ~ goldfries (англ.) (19 октября 2013). Дата обращения: 27 февраля 2021. Архивировано 8 марта 2021 года.
  11. What's the difference between GPU Memory bandwidth and speed? (англ.). superuser.com (7 марта 2017). Дата обращения: 27 февраля 2021.
  12. "Ran Out of Video Memory" Error (англ.). 2K Support. Дата обращения: 27 февраля 2021. Архивировано 4 марта 2021 года.
  13. Are You Running Out of Video Memory? Detecting Video-Memory Overcommitment using GPUView (англ.). NVIDIA Developer (2 июня 2015). Дата обращения: 4 апреля 2021. Архивировано 19 апреля 2021 года.
  14. 1 2 Синхронизация кадров видеоизображения с частотой обновления экрана  (рус.). Intel (14 августа 2009). Дата обращения: 24 февраля 2021.
  15. Detecting Video Memory Budget  (рус.). Intel. Дата обращения: 24 февраля 2021.
  16. Часто задаваемые вопросы о более старом Intel® Graphics Products...  (рус.) Intel (5 декабря 2017). Дата обращения: 24 февраля 2021.
  17. Calculating Graphics Memory - Windows drivers (англ.). docs.microsoft.com (20 апреля 2017). Дата обращения: 24 февраля 2021. Архивировано 20 октября 2021 года.
  18. Часто задаваемые вопросы о памяти графических систем Intel® в ОС...  (рус.) Intel. Дата обращения: 24 февраля 2021.
  19. What is IGD Aperture Size? (англ.). Intel. Дата обращения: 24 февраля 2021.
  20. Ian Paul. How “Unified Memory” Speeds Up Apple’s M1 ARM Macs (англ.). How-To Geek. Дата обращения: 24 февраля 2021. Архивировано 24 марта 2021 года.
  21. Видеокарты GeForce RTX 3000 умеют загружать данные напрямую из SSD, минуя процессор. Это называется RTX IO  (рус.). iXBT.com (3 сентября 2020). Дата обращения: 27 февраля 2021.
  22. Matt Mills. How to Change the GDDR6 Timings of Your AMD Graphics | ITIGIC (амер. англ.) (22 августа 2020). Дата обращения: 27 февраля 2021. Архивировано 24 октября 2020 года.
  23. How to Tune GPU Performance Using Radeon Software (англ.). amd.com. Дата обращения: 27 февраля 2021. Архивировано 9 февраля 2021 года.
  24. Zhiye Liu. Report: Why The GeForce RTX 3080's GDDR6X Memory Is Clocked at 19 Gbps (англ.). Tom's Hardware (21 сентября 2020). Дата обращения: 27 февраля 2021.
  25. Igor Wallossek. GDDR6 memory temperatures comprehensibly explained and remeasured - is AMD doing everything right? | Basics (англ.). igor´sLAB (11 ноября 2019). Дата обращения: 27 февраля 2021. Архивировано 23 января 2021 года.
  26. Михаил Гук. Аппаратные средства IBM PC. Энциклопедия, 2-е изд. — СПб.: Питер, 2002. — 928 с.: ил. — С. 526—528, 542
  27. 1 2 видеопамять // Модернизация и ремонт ноутбуков. — Издательский дом Вильямс. — С. 454. — 688 с. — ISBN 978-5-8459-0897-1.
  28. Многообразие типов видеопамяти  (рус.). iXBT.com. Дата обращения: 24 февраля 2021. Архивировано 5 декабря 2020 года.
  29. Типы современной видеопамяти  (рус.). НИКС. Дата обращения: 4 апреля 2021. Архивировано 17 марта 2022 года.
  30. Современные типы видеопамяти  (рус.). НИКС. Дата обращения: 23 июля 2021. Архивировано 23 июля 2021 года.
  31. Resizable BAR support - Windows drivers (англ.). docs.microsoft.com. Дата обращения: 27 февраля 2021. Архивировано 25 января 2021 года.
  32. What is and how does Resizable BAR technology work? (англ.). HardwarEsfera (10 декабря 2020). Дата обращения: 27 февраля 2021. Архивировано 1 марта 2021 года.
  33. GeForce RTX 30 Series Performance To Accelerate With Resizable BAR Support (англ.). NVIDIA (25 февраля 2021). Дата обращения: 27 февраля 2021. Архивировано 26 февраля 2021 года.
  34. Сколько видеопамяти нужно для компьютерных игр?  (рус.) Онлайн-журнал CHIP (7 февраля 2018). Дата обращения: 25 февраля 2021. Архивировано 4 марта 2021 года.
  35. Разработчики Cyberpunk 2077 дополнили системные требования конфигурациями для 4K и трассировки лучей  (рус.). 3DNews - Daily Digital Digest. Дата обращения: 27 февраля 2021. Архивировано 9 января 2021 года.
  36. Graphics Solutions  (неопр.). Дата обращения: 14 февраля 2021. Архивировано 29 апреля 2015 года.
  37. NVIDIA TITAN RTX is the fastest PC graphics card ever built | NVIDIA  (неопр.). Дата обращения: 14 февраля 2021. Архивировано 22 февраля 2019 года.
  38. NVIDIA GeForce GTX 1080  (неопр.). Дата обращения: 14 февраля 2021. Архивировано 26 февраля 2017 года.
  39. NVIDIA TITAN X Pascal  (неопр.). Дата обращения: 14 февраля 2021. Архивировано 22 февраля 2017 года.
  40. TITAN RTX Ultimate PC Graphics Card with Turing | NVIDIA  (неопр.). Дата обращения: 14 февраля 2021. Архивировано 26 декабря 2018 года.
  41. Фридланд А. Я. видеопамять // Информатика и компьютерные технологии: Основные термины: Толковый словарь. — 3-е изд. — М.: Астрель, 2003. — С. 32. — 272 с. — ISBN 5-271-04324-X.
  42. Tips to find out memory manufacturer of your GPU - GPU memory type (англ.). Coin Guides (20 марта 2018). Дата обращения: 27 февраля 2021. Архивировано 15 января 2021 года.

ЛитератураПравить

СсылкиПравить