Байесовская линейная регрессия
Байесовская линейная регрессия — это подход в линейной регрессии, в котором статистический анализ проводится в контексте байесовского вывода: когда регрессионная модель имеет ошибки[en], имеющие нормальное распределение, и, если принимается определённая форма априорного распределения, доступны явные результаты для апостериорных распределений вероятностей параметров модели.
Конфигурация моделиПравить
Рассмотрим стандартную задачу линейной регрессии, в которой для мы указываем среднее условное распределение величины для заданного вектора предсказаний :
где является вектором, а являются независимыми и одинаково распределёнными нормально случайными величинами:
Это соответствует следующей функции правдоподобия:
Решение обычного метода наименьших квадратов является оценкой вектора коэффициентов с помощью псевдоинверсной матрицы Мура — Пенроуза:
где является матрицей плана[en], каждая строка которой является вектором предсказаний , а является вектор-столбцом r .
Это является частотным[en] подходом, и предполагается, что существует достаточно измерений для того, чтобы сказать что-то осмысленное о . В байесовском подходе данные сопровождаются дополнительной информацией в виде априорного распределения вероятности. Априорные убеждения о параметрах комбинируются с функцией правдоподобия данных согласно теореме Байеса для получения апостериорной уверенности о параметрах и . Априорные данные могут принимать различные формы в зависимости от области применения и информации, которая доступна a priori.
Регрессия с сопряжёнными распределениямиПравить
Сопряжённое априорное распределениеПравить
Для любого априорного распределения, может не существовать аналитического решения для апостериорного распределения. В этом разделе мы рассмотрим так называемое сопряжённое априорное распределение, для которого апостериорное распределение можно вывести аналитически.
Априорное распределение является сопряжённым функции правдоподобия, если оно имеет ту же функциональную форму с учётом и . Поскольку логарифмическое правдоподобие квадратично от , его перепишем так, что правдоподобие становится нормальным от . Запишем
Правдоподобие теперь переписывается как
где
- и ,
где является числом коэффициентов регрессии.
Это указывает на вид априорного распределения:
где является обратным гамма-распределением[en]
В обозначениях, введённых в статье Обратное гамма-распределение[en], это плотность распределения с и , где и являются априорными значениями и соответственно. Эквивалентно, эту плотность можно описать как масштабированное обратное распределение хи-квадрат[en]
Далее, условная априорная плотность является нормальным распределением,
В обозначениях нормального распределения условное априорное распределение равно
Апостериорное распределениеПравить
При указанном априорным распределении апостериорное распределение можно выразить как
После некоторых преобразований[1] апостериорная вероятность может быть переписана так, что апостериорное среднее вектора параметров может быть выражено в терминах оценки по методу наименьших квадратов и априорного среднего , где поддержка априорной вероятности выражается матрицей априорной точности
Для подтверждения, что в действительности является апостериорным средним, квадратичные члены в экспоненте можно преобразовать к квадратичной форме[en] от [2].
Теперь апостериорное распределение можно выразить как нормальное распределение, умноженное на обратное гамма-распределение[en]:
Поэтому апостериорное распределение можно параметризовать следующим образом.
где два множителя соответствуют плотностям распределений и с параметрами, задаваемыми выражениями
Это можно интерпретировать как байесовское обучение, в котором параметры обновляются согласно следующим равенствам
Обоснованность моделиПравить
Обоснованность модели — это вероятность данных для данной модели . Она известна также как предельное правдоподобие и как априорная предсказательная плотность. Здесь модель определяется функцией правдоподобия и априорным распределением параметров, то есть, . Обоснованность модели фиксируется одним числом, показывающим, насколько хорошо такая модель объясняет наблюдения. Обоснованность модели байесовской линейной регрессии, представленная в этом разделе, может быть использована для сравнения конкурирующих линейных моделей путём байесовского сравнения моделей. Эти модели могут отличаться числом и значениями предсказывающих переменных, как и их априорными значениями в параметрах модели. Сложность модели принимается во внимание обоснованностью модели, поскольку она исключает параметры путём интегрирования по всем возможным значениям и .
Этот интеграл можно вычислить аналитически и решение задаётся следующим равенством[3]
Здесь означает гамма-функцию. Поскольку мы выбрали сопряжённое априорное распределение, предельное правдоподобие может быть легко вычислено путём решения следующего равенства для произвольных значений и .
Заметим, что это равенство является ни чем иным, как переформулировкой теоремы Байеса. Подстановка формулы для априорной вероятности, правдоподобия и апостериорной вероятности и упрощения получающегося выражения приводит к аналитическому выражению, приведённому выше.
Другие случаиПравить
В общем случае может оказаться невозможным или нецелесообразным получать апостериорное распределение аналитически. Однако можно аппроксимировать апостериорную вероятность методом приближенного байесовского вывода[en], таким как выборка по методу Монте-Карло[4] или вариационные байесовские методы[en].
Частный случай называется гребневой регрессией.
Аналогичный анализ можно провести для общего случая множественной регрессии и частично для байесовской оценки ковариационной матрицы[en] — см. Байесовская мультивариантная линейная регрессия[en].
См. такжеПравить
ПримечанияПравить
- ↑ Промежуточные выкладки можно найти в книге O’Hagan (1994) в начале главы по линейным моделям.
- ↑ Промежуточные выкладки можно найти в книге Fahrmeir и др. (2009 на стр. 188.
- ↑ Промежуточные выкладки можно найти в книге O’Hagan (1994) на странице 257.
- ↑ Карлин и Луи (Carlin, Louis, 2008) и Гельман с соавторами (Gelman, et al., 2003) объяснили как использовать методы выборочных наблюдений для байесовской линейной регрессии.
ЛитератураПравить
- George E. P. Box, Tiao G. C. Bayesian Inference in Statistical Analysis. — Wiley, 1973. — ISBN 0-471-57428-7.
- Bradley P. Carlin, Thomas A. Louis. Bayesian Methods for Data Analysis, Third Edition. — Boca Raton, FL: Chapman and Hall/CRC, 2008. — ISBN 1-58488-697-8.
- Fahrmeir L., Kneib T., Lang S. Regression. Modelle, Methoden und Anwendungen. — 2nd. — Heidelberg: Springer, 2009. — ISBN 978-3-642-01836-7. — doi:10.1007/978-3-642-01837-4.
- Fornalski K.W., Parzych G., Pylak M., Satuła D., Dobrzyński L. Application of Bayesian reasoning and the Maximum Entropy Method to some reconstruction problems // Acta Physica Polonica A. — 2010. — Т. 117, вып. 6. — С. 892—899. — doi:10.12693/APhysPolA.117.892.
- Krzysztof W. Fornalski. Applications of the robust Bayesian regression analysis // International Journal of Society Systems Science. — 2015. — Т. 7, вып. 4. — С. 314–333. — doi:10.1504/IJSSS.2015.073223.
- Andrew Gelman, John B. Carlin, Hal S. Stern, Donald B. Rubin. Bayesian Data Analysis, Second Edition. — Boca Raton, FL: Chapman and Hall/CRC, 2003. — ISBN 1-58488-388-X.
- Michael Goldstein, David Wooff. Bayes Linear Statistics, Theory & Methods. — Wiley, 2007. — ISBN 978-0-470-01562-9.
- Minka, Thomas P. (2001) Bayesian Linear Regression Архивная копия от 26 октября 2008 на Wayback Machine, Microsoft research web page
- Peter E. Rossi, Greg M. Allenby, Robert McCulloch. Bayesian Statistics and Marketing. — John Wiley & Sons, 2006. — ISBN 0470863676.
- Anthony O'Hagan. Bayesian Inference. — First. — Halsted, 1994. — Т. 2B. — (Kendall's Advanced Theory of Statistics). — ISBN 0-340-52922-9.
- Sivia, D.S., Skilling, J. Data Analysis - A Bayesian Tutorial. — Second. — Oxford University Press, 2006.
- Gero Walter, Thomas Augustin. Bayesian Linear Regression—Different Conjugate Models and Their (In)Sensitivity to Prior-Data Conflict // Technical Report Number 069, Department of Statistics, University of Munich. — 2009.
Программное обеспечениеПравить
- Python
- Bayesian Type-II Linear Regression code, tutorial Архивная копия от 18 декабря 2020 на Wayback Machine
- ARD Linear Regression code Архивная копия от 1 марта 2017 на Wayback Machine
- ARD Linear Regression with kernelized features code Архивная копия от 1 марта 2017 на Wayback Machine, tutorial Архивная копия от 18 декабря 2020 на Wayback Machine
Для улучшения этой статьи желательно:
|