Это не официальный сайт wikipedia.org 01.01.2023

Игра с неполной информацией — Википедия

Игра с неполной информацией

(перенаправлено с «Байесовская игра»)

Байесовская игра (англ. Bayesian game) или игра с неполной информацией (англ. incomplete information game) в теории игр характеризуются неполнотой информации о соперниках (их возможных стратегиях и выигрышах), при этом у игроков есть веры относительно этой неопределённости. Байесовскую игру можно преобразовать в игру полной, но несовершенной информации, если принять допущение об общем априорном распределении. В отличие от неполной информации, несовершенная информация включает знание стратегий и выигрышей соперников, но история игры (предыдущие действия оппонентов) доступна не всем участникам.

Джон Харсаньи описал байесовские игры следующим образом[1]. В дополнение к фактическим участникам игры появляется виртуальный игрок «Природа». Природа наделяет каждого из фактических участников случайной переменной, значения которой называются типами. Распределение (плотность или функция вероятности) типов для каждого из игроков известно. В начале игры природа «выбирает» типы игроков. Тип, в частности, определяет функцию выигрыша участника. Таким образом, неполнота информации в байесовской игре — незнание по крайней мере одним игроком типа некого другого участника. Игроки обладают верами относительно типов соперников; вера — вероятностное распределение на множестве возможных типов. В процессе игры веры обновляются в соответствии с теоремой Байеса.

Определение править

Игра определяется так: G = N , Ω , A i , u i , T i , τ i , p i , C i i N  , где

  1. N   — множество игроков.
  2. Ω   — множество состояний природы. Пример состояния природы: порядок колоды в карточной игре.
  3. A i   — множество действий игрока i  . Пусть A = A 1 × A 2 × × A N  .
  4. T i   — множество типов игрока i  . Тип определяется по правилу τ i : Ω T i  .
  5. C i A i × T i   определяет доступные действия для игрока i  , обладающего неким типом в T i  .
  6. u i : Ω × A R   функция выигрыша игрока i  . Более формально, пусть L = { ( ω , a 1 , , a N ) ω Ω , i , ( a i , τ i ( ω ) ) C i }  , и u i : L R  .
  7. p i   распределение вероятности на Ω   для каждого игрока i  , то есть каждый игрок по-разному оценивает вероятности состояний природы; в течение игры они его не знают.

Чистая стратегия s i : T i A i   должна удовлетворять ( s i ( t i ) , t i ) C i   для всех t i  . Стратегия каждого игрока зависит только от его типа, так как типы других игроков для него скрыты. Ожидаемый выигрыш игрока i   при данном стратегическом профиле равен u i ( S ) = E ω p i [ u i ( ω , s 1 ( τ 1 ( ω ) ) , , s N ( τ N ( ω ) ) ) ]  .

Пусть S i   — множество чистых стратегий, S i = { s i : T i A i ( s i ( t i ) , t i ) C i , t i } .  

Байесовское равновесие игры G   определяется как равновесие Нэша (возможно, в смешанных стратегиях) игры G ^ = N , A ^ = S 1 × S 2 × × S N , u ^ = u  . Если игра G   конечна, байесовское равновесие существует всегда.

Примеры править

Дилемма шерифа править

Шериф сталкивается с подозреваемым. Оба должны одновременно принять решение о том, следует ли стрелять.

Подозреваемый имеет два возможных типа: «преступник» и «законопослушный». У шерифа есть только один тип. Подозреваемому известен его тип, шерифу же он неведом. Таким образом, в игре присутствует неполная информация, она относится к классу байесовских. По мнению шерифа, с вероятностью p подозреваемый является преступником, с вероятностью 1-p — законопослушным гражданином. Величины p и 1-p известны обоим игрокам, поскольку делается допущение об общем априорном распределении. Именно оно позволяет преобразовать эту игру в игру полной, но несовершенной информации.

Шериф предпочёл бы стрелять, если стреляет подозреваемый, и избежать стрельбы в противном случае (даже если подозреваемый действительно является преступником). Преступник склонен стрелять (даже если шериф не стреляет), в то время как законопослушный гражданин хочет избежать конфликта любым образом (даже если шериф стреляет). Матрицы выигрышей зависит от типа подозреваемого:

 
Тип = «Законопослушный» Действие шерифа
Стрелять Не стрелять
Действие подозреваемого Стрелять -3, -1 -1, -2
Не стрелять -2, -1 0, 0
 
Тип = «Преступник» Действие шерифа
Стрелять Не стрелять
Действие подозреваемого Стрелять 0, 0 2, -2
Не стрелять -2, -1 -1,1

Если оба имеется общее знание о рациональности игроков (игрок 1 рационален; игрок 1 знает, что игрок 2 рационален; игрок 1 знает, что игрок 2, знает, что игрок 1 рационален и т.д. до бесконечности) игра пройдёт по следующему равновесному (совершенное байесовское равновесие) сценарию[2][3]:

Когда подозреваемый имеет тип «законопослушный», доминирующая стратегия для него — не стрелять, когда же он имеет тип «преступник», доминирующая стратегия предписывает ему стрелять. Сильно доминируемые стратегии можно исключить из рассмотрения. Тогда если шериф стреляет, он получает 0 с вероятностью p и -1 с вероятностью 1-p. Его ожидаемый выигрыш составляет p-1. Если шериф не стреляет, ему полагается -2 с вероятностью p и 0 с вероятностью 1-p; ожидаемый выигрыш равен -2p. Шериф всегда будет стрелять при условии p-1 > -2p, то есть когда p > 1/3.

См. также править

Примечания править

  1. Harsanyi, John C., 1967/1968. "Games with Incomplete Information Played by Bayesian Players, I-III." Management Science 14 (3): 159-183 (Part I), 14 (5): 320-334 (Part II), 14 (7): 486-502 (Part III).
  2. Coursera (англ.). Coursera. Дата обращения: 16 июня 2016. Архивировано 10 августа 2016 года.
  3. Hu, Yuhuang; Loo, Chu Kiong. A Generalized Quantum-Inspired Decision Making Model for Intelligent Agent (англ.) // The Scientific World Journal  (англ.) (рус. : journal. — 2014. — 17 March (vol. 2014). — ISSN 1537-744X. — doi:10.1155/2014/240983. — PMID 24778580. — PMC 3977121.

Литература править